

## Overview of Multi Criteria Decision Analysis for Benefit Risk Analysis

#### Praveen Thokala University of Sheffield



# Outline of my talk

- Why do we need MCDAP
- What is MCDA and how can it support health care decision making?
- What are the key steps in implementing an MCDA?
  - illustrated using a simple case study
- Take home messages



# Why are we interested in MCDA?

- BRA decisions are challenging
  - Multiple endpoints, both benefits and risks
  - Difficult to process and evaluate all relevant information
  - Cognitive burden can lead to the use of heuristics
  - Confront trade-offs between criteria
  - Conflicting priorities between stakeholders



What is MCDA?

#### • Belton and Stewart define as

"an umbrella term to describe a collection of formal approaches, which seek to take explicit account of multiple criteria in helping individuals or groups explore decisions that matter."

 Most health care applications use value measurement models (i.e. weighted sum approach), which is also our focus



• These types of models use following equation  $V(a) = \sum v_i(a) \times w_i$ 

where V(a) is the overall value is separated into  $v_i$  (a), the value of alternative  $\alpha$  on *i*th criterion and weighted using  $w_i$  which represents the importance of *i*th criterion

 Scores v<sub>i</sub> incorporate preferences for changes in performance <u>within criteria</u> and Weights w<sub>i</sub> incorporate stakeholders' preferences <u>between</u> criteria



#### Socio-technical approach

#### SOCIAL DIMENSION

#### **Decision conferencing**



#### Facilitated workshops, participative process

TECHNICAL DIMENSION Multi-Criteria Decision Analysis Modelling

Formal mathematical approaches Decision support tool

Mara Airoldi, Alec Morton, Gwyn Bevan - Developing a commissioning strategy in Mental Health, Cancer and Dentistry in Sheffield PCT



# Steps in MCDA

| Step                               | Description                                                                                                                      |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Defining the decision              | Identify objectives, type of decision, alternatives, stakeholders                                                                |  |  |
| problem                            | and output required                                                                                                              |  |  |
| Selecting and structuring criteria | Identify criteria relevant for evaluating alternatives                                                                           |  |  |
|                                    | Gather data about the alternatives' performance on the criteria                                                                  |  |  |
| Measuring performance              | and summarize this in a 'performance matrix'                                                                                     |  |  |
| Scoring alternatives               | Elicit stakeholders' preferences for changes within criteria                                                                     |  |  |
| Weighting criteria                 | Elicit stakeholders' preferences between criteria                                                                                |  |  |
| Calculating aggregate<br>scores    | Use the alternatives' scores on the criteria and the weights for<br>the criteria to get 'total value' – to rank the alternatives |  |  |
| Dealing with uncertainty           | Perform uncertainty analysis to understand the level of robustness of the MCDA results                                           |  |  |
| <b>Reporting and examination</b>   | Interpret the MCDA outputs, including uncertainty analysis, to                                                                   |  |  |
| of findings                        | support decision-making                                                                                                          |  |  |



#### Step 1: Defining the Decision Problem

- Goal: benefit-risk analysis of treatments
- The composition of the decision makers depends on the context
  - regulatory committee (approval)
  - Pharmaceutical companies (pre-launch)
  - Patients/clinicians (for shared decision making post-launch)
- Simple case study: Compare benefit risk balance of alternative 1 and alternative 2



Step 2: selecting criteria

- Identify criteria (i.e. benefits and risks) by which the alternatives will be evaluated
- Criteria can be identified and selected in a number of ways ranging from
  - pivotal studies
  - previous decisions
  - focus groups/facilitated workshops
- Theoretical requirements for the criteria



## Simple case study





Step 3: Measuring performance

- The performance of the alternatives on each of the criteria needs to be determined
- This can be gathered in a various ways, from
  - standard evidence synthesis techniques (e.g., clinical trials and meta-analysis)
  - to simulation modelling in early stages of drug development
- The alternatives' performance on criteria reported in a table is known as a "performance matrix"



#### **Performance** matrix

|             | Alternative 1 | Alternative 2 |  |
|-------------|---------------|---------------|--|
| Criterion A | 85 aa         | 73 aa         |  |
| Criterion B | 0.23 bb       | 0.15 bb       |  |
| Criterion C | 8 cc          | 6.5 cc        |  |

We can use this performance matrix to support deliberation, but all preferences are implicit

MCDA makes those preferences explicit. Both preferences <u>within</u> each criterion (scores) and <u>between</u> criteria (weights) need to be elicited



- Scores are used to translate performance measures using different units for each criterion onto a common scale
- Scores also incorporate preferences for changes in performance <u>within criteria</u>, such that the same change along the scoring scale (e.g., 10–20 or 60–70) is equally preferred
- Number of different scoring approaches, in the next slide we illustrate "partial value functions",











|                    | Alternative 1 | Alternative 2 | Scores for<br>Alternative 1 | Scores for<br>Alternative 2 |
|--------------------|---------------|---------------|-----------------------------|-----------------------------|
| <b>Criterion A</b> | 85 aa         | 73 aa         | 80                          | 32                          |
| <b>Criterion B</b> | 0.23 bb       | 0.15 bb       | 65                          | 55                          |
| <b>Criterion C</b> | 8 cc          | 6.5 cc        | 40                          | 70                          |



# Step 5: Weighting

- Weighting involves eliciting stakeholders' preferences <u>between</u> criteria
- Weights can be thought of 'scaling factors' (e.g. setting exchange rates to combine €, \$, and £ into a single overall value)
- Number of different weighting approaches, in the next slide we illustrate "swing weighting"



# Step 5: Weighting

Imagine the starting point is at the worst level for each criterion. Identify which criterion you would like to improve first to its best level



Give that criterion 100 points. Then, assign points to the swings in other criteria relative to the swing in most important criterion.





# Step 5: Weighting

| Criteria    | Weights |
|-------------|---------|
| Criterion A | 0.25    |
| Criterion B | 0.33    |
| Criterion C | 0.42    |



Step 6: Aggregation

 After eliciting the scores and the weights, the aggregation is frequently performed using an additive model

 $V(a) = \sum v_i(a) \times w_i$  $V(b) = \sum v_i(b) \times w_i$ 



# Step 6: Aggregation

| Criteria      | Scores for     | Scores for    | Weights      | Alternative 1 | Alternative 2 |
|---------------|----------------|---------------|--------------|---------------|---------------|
|               | Alternative 1  | Alternative 2 |              | Total Value   | Total Value   |
| Criterion A   | 80             | 32            | 0.25         | 80x0.25 =     | 32 x 0.25 =   |
|               |                |               |              | 20            | 8             |
| Criterion B   | 65             | 55            | 0.33         | 65 x 0.33 =   | 55 x 0.33 =   |
|               |                |               |              | 21.45         | 18.15         |
| Criterion C   | 40             | 70            | 0.42         | 40 x 0.42 =   | 70 x 0.42 =   |
|               |                |               |              | 16.8          | 29.4          |
| Overall Value | of the Alterna | <u>58.25</u>  | <u>55.55</u> |               |               |



#### Step 7: Dealing with Uncertainty

- Parameter uncertainty (e.g., uncertainty in the performance of alternatives) can be addressed using techniques such as deterministic or probabilistic sensitivity analysis techniques
- Heterogeneity in preferences among subgroups can be studied by using weights and scores obtained from different stakeholder groups in the MCDA model



### Step 8: Interpretation/ Reporting

- The decision makers/stakeholders can be presented with the MCDA results either in tabular or graphical form
- The MCDA model allows them to explore the results for different scenarios
- MCDA is intended to serve as a <u>tool to help</u> decision makers reach a decision - their decision, not the tool's decision



# Results visualisation

For example, stacked bar graphs showing how the total value is a combination of the value from each criterion.



Zafiropoulos, Nikolaos and Phillips, Lawrence D. and Pignatti, Francesco and Luria, Xavier (2012) *Evaluating benefit-risk: an Agency perspective.* Regulatory rapporteur, 9 (6). pp. 5-8. ISSN 1742-8955



#### Show results-difference display

| 👪 Sorts |                      |              |          |          |     |                       |
|---------|----------------------|--------------|----------|----------|-----|-----------------------|
| Compare | Benlysta 10 mg 🚽 m   | inus Placebo | <b>)</b> | •        |     |                       |
|         |                      |              |          |          |     |                       |
|         | Model Order          | Cum Wt       | Diff     | Wtd Diff | Sum | Advantages<br>of 10mg |
| FE      | Flare rate           | 20.2         | 12       | 2.5      | 2.5 |                       |
| SLEDAI  | % Improved 6         | 16.2         | 14       | 2.3      | 4.8 |                       |
| SLEDAI  | % Improved 4         | 12.9         | 12       | 1.6      | 6.3 |                       |
| FE      | CS sparing           | 12.1         | 5        | 0.6      | 6.9 | -                     |
| SRI     | BILAG A/B            | 9.7          | 6        | 0.6      | 7.5 | -                     |
| PGA     | % no worse           | 3.2          | 9        | 0.3      | 7.8 | -                     |
| UFE     | Potential SAEs       | 0.0          | -100     | 0.0      | 7.8 | Advantages            |
| UFE     | Infections           | 19.2         | 0        | 0.0      | 7.8 | of Placebo            |
| FE      | QoL                  | 0.2          | -0       | -0.000   | 7.8 | officious             |
| PGA     | Mean score           | 2.4          | -4       | -0.1     | 7.7 | •                     |
| UFE     | Sensitivity Reaction | 3.8          | -15      | -0.6     | 7.2 | <b>—</b>              |
|         |                      | 100.0        |          | 7.2      |     |                       |
|         |                      |              |          |          |     |                       |
|         |                      |              |          |          |     |                       |
|         |                      |              |          |          |     |                       |

Zafiropoulos, Nikolaos and Phillips, Lawrence D. and Pignatti, Francesco and Luria, Xavier (2012) *Evaluating benefit-risk: an Agency perspective*. Regulatory rapporteur, 9 (6). pp. 5-8. ISSN 1742-8955



### **Preference elicitation**

#### Source of value judgements

 regulatory committees, internal decision making bodies, patients/clinicians

#### Elicitation setting

- workshop using deliberation (or anonymous rating using surveys etc)
- Issues with group dynamics
  - conflicts, sharing and consensus
  - aggregation of the anonymous scores, mean and standard deviations



## Take home messages





### Take home messages

- The theory of MCDA modelling is simple, the complexity is in the implementation (elicitation of the preferences is a tricky task, more with issues of group dynamics)
- MCDA can be used throughout the product life cycle (early stage to post launch)
- MCDA is great for visualisation of BRA
- Uncertainty analysis is currently work in progress within health care MCDA field